Developing Software Bug Prediction Models Using Various Software Metrics as the Bug Indicators

نویسندگان

  • Varuna Gupta
  • N. Ganeshan
  • Tarun K. Singhal
چکیده

The bug prediction effectiveness reasonably contributes towards enhancing quality of software. Bug indicators contribute significantly in determining the bug prediction approaches and help in achieving software reliability. Various comparative research studies have indicated that Depth of Inheritance (DIT), Weighted Method per Class (WMC), Coupling between Objects (CBO) and Lines of Code (LoC) have significantly established themselves as reliable bug indicators for comprehensive bug predictions. The researchers have carried out a quantitative research and have developed prediction models using above bug indicators as models input and have applied these models on open source projects (Camel and Ant). During this research, the results demonstrates that there is significant correlation between size oriented metrics (bug indicators) such as DIT, WMC, CBO, LoC and bugs. Overall, DIT takes dominance in achieving better impact on predicting bugs than WMC, CBO and LoC. The outcomes of the present research study would be of significance to software quality practitioners worldwide and would help them in prioritizing the efforts involved in bug prediction. Keywords—Bug Prediction; DIT; WMC; CBO; LoC; SRGM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of restricted forward greedy feature selection technique on bug prediction

Several change metrics and source code metrics have been introduced and proved to be effective in bug prediction. Researchers performed comparative studies of bug prediction models built using the individual metrics as well as combination of these metrics. In this paper, we investigate the impact of feature selection in bug prediction models by analyzing the misclassification rates of these mod...

متن کامل

On the Non-Generalizability in Bug Prediction

Bug prediction is a technique used to estimate the most bug-prone entities in software systems. Bug prediction approaches vary in many design options, such as dependent variables, independent variables, and machine learning models. Choosing the right combination of design options to build an e↵ective bug predictor is hard. Previous studies do not consider this complexity and draw conclusions ba...

متن کامل

Against the Mainstream in Bug Prediction

Bug prediction is a technique used to estimate the most bug-prone entities in software systems. Bug prediction approaches vary in many design options, such as dependent variables, independent variables, and machine learning models. Choosing the right combination of design options to build an effective bug predictor is hard. Previous studies do not consider this complexity and draw conclusions b...

متن کامل

Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android

Abstract—Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metri...

متن کامل

Evaluating the impact of software metrics on defects prediction. Part 2

Software metrics are used as indicators of the quality of the developed software. Metrics can be collected from any software part such as: code, design, or requirements. In this paper, we evaluated several examples of design coupling metrics. Analysis and experiments follow hereinafter to demonstrate the use and value of those metrics. This is the second part for a paper we published in Compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015